Changes in meat consumption can improve groundwater quality

Changes in meat consumption can improve groundwater quality


  • Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Herrero, M. et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Chang. 6, 452–461 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Errickson, F., Kuruc, K. & McFadden, J. Animal-based foods have high social and climate costs. Nat. Food 2, 274–281 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ritchie, H. How Much of the World’s Land Would We Need in Order to Feed the Global Population with the Average Diet of a Given Country? (Our World in Data, 2017).

  • Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 5295–5300 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexander, P. et al. Could consumption of insects, cultured meat or imitation meat reduce global agricultural land use? Glob. Food Sec. 15, 22–32 (2017).

    Article 

    Google Scholar
     

  • Xu, X. et al. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nat. Food 2, 724–732 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, P. et al. Policy-enabled stabilization of nitrous oxide emissions from livestock production in China over 1978–2017. Nat. Food 3, 356–366 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koh, E. H. et al. Nationwide groundwater monitoring around infectious-disease-caused livestock mortality burials in Korea: superimposed influence of animal leachate on pre-existing anthropogenic pollution. Environ. Int. 129, 376–388 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Liu, Y., Zhou, A. & Zhang, L. Identification of groundwater pollution from livestock farming using fluorescence spectroscopy coupled with multivariate statistical methods. Water Res. 206, 117754 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y., Bi, Y., Mi, W., Xie, S. & Ji, L. Land-use change caused by anthropogenic activities increase fluoride and arsenic pollution in groundwater and human health risk. J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2020.124337 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boy-Roura, M., Nolan, B. T., Menció, A. & Mas-Pla, J. Regression model for aquifer vulnerability assessment of nitrate pollution in the Osona region (NE Spain). J. Hydrol. 505, 150–162 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Matiatos, I. Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (Central Greece). Sci. Total Environ. 541, 802–814 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kivits, T., Broers, H. P., Beeltje, H., van Vliet, M. & Griffioen, J. Presence and fate of veterinary antibiotics in age-dated groundwater in areas with intensive livestock farming. Environ. Pollut. 241, 988–998 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, B. et al. Global manure nitrogen production and application in cropland during 1860–2014: a 5 arcmin gridded global dataset for Earth system modeling. Earth Syst. Sci. Data 9, 667–678 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Kim, S. H. et al. Shift of nitrate sources in groundwater due to intensive livestock farming on Jeju Island, South Korea: with emphasis on legacy effects on water management. Water Res. 191, 116814 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christen, C. Meat consumption in the U.S. is growing at an alarming rate. Sentient https://sentientmedia.org/meat-consumption-in-the-us/ (2021).

  • Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ritchie, H., Rosado, P. & Roser, M. Meat and Dairy Production (Our World in Data, 2017).

  • Chriki, S. & Hocquette, J. F. The myth of cultured meat: a review. Front. Nutr. https://doi.org/10.3389/fnut.2020.00007 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinfeld, H. et al. Livestock’s Long Shadow: Environmental Issues and Options (FAO, 2006).

  • Howarth, R. W., Boyer, E. W., Pabich, W. J. & Galloway, J. N. Nitrogen use in the United States from 1961–2000 and potential future trends. Ambio 31, 88–96 (2002).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, K., Guo, Z., Zhan, Y., Roden, E. E. & Zheng, C. Heterogeneity in permeability and particulate organic carbon content controls the redox condition of riverbed sediments at different timescales. Geophys. Res. Lett. 51, e2023GL107761 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Chen, K. et al. Influence of vertical hydrologic exchange flow, channel flow, and biogeochemical kinetics on CH4 emissions from rivers. Water Resour. Res. 59, e2023WR035341 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Burow, K. R., Nolan, B. T., Rupert, M. G. & Dubrovsky, N. M. Nitrate in groundwater of the United States, 1991–2003. Environ. Sci. Technol. 44, 4988–4997 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Landon, M. K., Green, C. T., Belitz, K., Singleton, M. J. & Esser, B. K. Relations of hydrogeologic factors, groundwater reduction–oxidation conditions, and temporal and spatial distributions of nitrate, Central-Eastside San Joaquin Valley, California, USA. Hydrogeol. J. 19, 1203–1224 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gurdak, J. J. & Qi, S. L. Vulnerability of recently recharged groundwater in principle aquifers of the United States to nitrate contamination. Environ. Sci. Technol. 46, 6004–6012 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Drinking Water Contaminants: National Primary Drinking Water Regulations (US EPA, 2015); https://www.epa.gov/dwreginfo/drinking-water-regulations

  • de Vries, M. & de Boer, I. J. M. Comparing environmental impacts for livestock products: a review of life cycle assessments. Livest. Sci. 128, 1–11 (2010).

    Article 

    Google Scholar
     

  • Clark, M. A., Springmann, M., Hill, J. & Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl Acad. Sci. USA 116, 23357–23362 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Groundwater quality and health: making the invisible visible. Environ. Sci. Technol. 57, 5125–5136 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Profeta, A. et al. Consumer preferences for meat blended with plant proteins—empirical findings from Belgium. Futur. Foods 4, 100088 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rohmer, S. U. K., Gerdessen, J. C., Claassen, G. D. H., Bloemhof, J. M. & van’t Veer, P. A nutritional comparison and production perspective: reducing the environmental footprint of the future. J. Clean. Prod. 196, 1407–1417 (2018).

    Article 

    Google Scholar
     

  • Rubio, N. R., Xiang, N. & Kaplan, D. L. Plant-based and cell-based approaches to meat production. Nat. Commun. 11, 6276 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tuomisto, H. L. & Teixeira De Mattos, M. J. Environmental impacts of cultured meat production. Environ. Sci. Technol. 45, 6117–6123 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Oonincx, D. G. A. B. & de Boer, I. J. M. Environmental impact of the production of mealworms as a protein source for humans—a life cycle assessment. PLoS ONE https://doi.org/10.1371/journal.pone.0051145 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wade, M. & Hoelle, J. A review of edible insect industrialization: scales of production and implications for sustainability. Environ. Res. Lett. 15, 123013 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ignaszewski, E. 2021 U.S. retail market insights: plant-based foods. Good Food Institute https://gfi.org/wp-content/uploads/2022/10/2021-U.S.-retail-market-insights_Plant-based-foods_GFI-1.pdf (2021).

  • Govorushko, S. Global status of insects as food and feed source: a review. Trends Food Sci. Technol. 91, 436–445 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gerhardt, C. You will be eating replacement meats within 20 years. Here’s why. World Economic Forum https://www.weforum.org/agenda/2019/06/you-will-be-eating-replacement-meats-within-20-years-heres-why/ (2019).

  • Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (Association for Computing Machinery, 2016); https://doi.org/10.1145/2939672.2939785

  • Pennino, M. J., Leibowitz, S. G., Compton, J. E., Hill, R. A. & Sabo, R. D. Patterns and predictions of drinking water nitrate violations across the conterminous United States. Sci. Total Environ. 722, 137661 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nolan, B. T. & Hitt, K. J. Vulnerability of shallow groundwater and drinking-water wells to nitrate in the United States. Environ. Sci. Technol. 40, 7834–7840 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mueller, N. D. & Lassaletta, L. Nitrogen challenges in global livestock systems. Nat. Food 1, 400–401 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dupas, R. et al. High-intensity rainfall following drought triggers extreme nutrient concentrations in a small agricultural catchment. Water Res. 264, 122108 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y., Crosbie, R., Yang, J., Wu, J. & Wang, W. Usefulness of soil moisture and actual evapotranspiration data for constraining potential groundwater recharge in semiarid regions. Water Resour. Res. 54, 4929–4945 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Mattick, C. S., Landis, A. E., Allenby, B. R. & Genovese, N. J. Anticipatory life cycle analysis of in vitro biomass cultivation for cultured meat production in the United States. Environ. Sci. Technol. 49, 11941–11949 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Peters, C. J., Picardy, J. A., Darrouzet-Nardi, A. & Griffin, T. S. Feed conversions, ration compositions, and land use efficiencies of major livestock products in U.S. agricultural systems. Agric. Syst. 130, 35–43 (2014).

    Article 

    Google Scholar
     

  • He, J., Evans, N. M., Liu, H. & Shao, S. A review of research on plant-based meat alternatives: driving forces, history, manufacturing, and consumer attitudes. Compr. Rev. Food Sci. Food Saf. 19, 2639–2656 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Lynch, J. & Pierrehumbert, R. Climate impacts of cultured meat and beef cattle. Front. Sustain. Food Syst. https://doi.org/10.3389/fsufs.2019.00005 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mekonnen, M. M., Neale, C. M. U., Ray, C., Erickson, G. E. & Hoekstra, A. Y. Water productivity in meat and milk production in the US from 1960 to 2016. Environ. Int. https://doi.org/10.1016/j.envint.2019.105084 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Bonetti, S., Wei, Z. & Or, D. A framework for quantifying hydrologic effects of soil structure across scales. Commun. Earth Environ. 2, 107 (2021).

    Article 

    Google Scholar
     

  • He, S., Wu, J., Wang, D. & He, X. Predictive modeling of groundwater nitrate pollution and evaluating its main impact factors using random forest. Chemosphere 290, 133388 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhan, Y. et al. Assessment of spatiotemporal risks for nationwide groundwater nitrate contamination. Sci. Total Environ. 947, 174508 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Condon, L. E., Atchley, A. L. & Maxwell, R. M. Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat. Commun. 11, 873 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vereecken, H. et al. Soil hydrology in the Earth system. Nat. Rev. Earth Environ. 3, 573–587 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Liu, C., Bartlet-Hunt, S. & Li, Y. Precipitation, temperature, and landcovers drive spatiotemporal variability of groundwater nitrate concentration across the continental United States. Sci. Total Environ. 945, 174040 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ransom, K. M., Nolan, B. T., Stackelberg, P. E., Belitz, K. & Fram, M. S. Machine learning predictions of nitrate in groundwater used for drinking supply in the conterminous United States. Sci. Total Environ. 807, 151065 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Turner, D. & Sumner, M. The influence of initial soil moisture content on field measured infiltration rates. Water SA 4, 18–24 (1978).


    Google Scholar
     

  • Penna, D., Tromp-Van Meerveld, H. J., Gobbi, A., Borga, M. & Dalla Fontana, G. The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrol. Earth Syst. Sci. 15, 689–702 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Hanrahan, B. R., King, K. W. & Williams, M. R. Controls on subsurface nitrate and dissolved reactive phosphorus losses from agricultural fields during precipitation-driven events. Sci. Total Environ. 754, 142047 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adam, D. How far will global population rise? Researchers can’t agree. Nature 597, 462–465 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiang, N. & Zhang, X. The challenges of bringing cultured meat to the market. Nat. Rev. Bioeng. 1, 791–792 (2023).

    Article 
    CAS 

    Google Scholar
     

  • David, S. et al. Co-culture approaches for cultivated meat production. Nat. Rev. Bioeng. 1, 817–831 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, C., Hoffmann, M. R., Mauzerall, D. L., Gan, J. & Song, L. Expanding our horizons on the Earth’s sustainable future. Sustain. Horizons 1, 100001 (2022).

    Article 

    Google Scholar
     

  • The Sustainable Development Goals Report 2020 (United Nations, 2020).

  • Xu, P. et al. Fertilizer management for global ammonia emission reduction. Nature 626, 792–798 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Meat: the future series—options for the livestock sector in developing and emerging economies to 2030 and beyond. WEF https://www3.weforum.org/docs/White_Paper_Livestock_Emerging%20Economies.pdf (2019).

  • Meat: the future series—alternative proteins. WEF https://www3.weforum.org/docs/WEF_White_Paper_Alternative_Proteins.pdf (2019).

  • Gilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data 5, 180227 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uwizeye, A. et al. Nitrogen emissions along global livestock supply chains. Nat. Food 1, 437–446 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, D. et al. Legacy nutrient dynamics at the watershed scale: principles, modeling, and implications. Adv. Agron. 149, 237–313 (2018).

    Article 

    Google Scholar
     

  • Van Meter, K. J. The Nitrogen Legacy: Understanding Time Lags in Catchment Response as a Function of Hydrologic and Biogeochemical Controls (Univ. Waterloo, 2016).

  • Sinha, E. & Michalak, A. M. Precipitation dominates interannual variability of riverine nitrogen loading across the continental United States. Environ. Sci. Technol. 50, 12874–12884 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Basu, N. B. et al. Managing nitrogen legacies to accelerate water quality improvement. Nat. Geosci. 15, 97–105 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zang, Y. et al. Quantify the effects of groundwater level recovery on groundwater nitrate dynamics through a quasi-3D integrated model for the vadose zone-groundwater coupled system. Water Res. 226, 119213 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Min, L., Liu, M., Wu, L. & Shen, Y. Groundwater storage recovery raises the risk of nitrate pollution. Environ. Sci. Technol. 56, 8–9 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, R. et al. Impacts of land surface nitrogen input on groundwater quality in the North China Plain. ACS ES&T Water 4, 2369–2381 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Pauloo, R. A., Fogg, G. E., Guo, Z. & Harter, T. Anthropogenic basin closure and groundwater salinization (ABCSAL). J. Hydrol. 593, 125787 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Podgorski, J. & Berg, M. Global analysis and prediction of fluoride in groundwater. Nat. Commun. 13, 4232 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, C., Akbariyeh, S., Bartelt-Hunt, S. & Li, Y. Impacts of future climate variability on atrazine accumulation and transport in corn production areas in the midwestern United States. Environ. Sci. Technol. 56, 7873–7882 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuang, X. et al. The changing nature of groundwater in the global water cycle. Science 383, eadf0630 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Twarakavi, N. K. C. & Kaluarachchi, J. J. Aquifer vulnerability assessment to heavy metals using ordinal logistic regression. Ground Water 43, 200–214 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zell, W. O. & Sanford, W. E. Calibrated simulation of the long-term average surficial groundwater system and derived spatial distributions of its characteristics for the contiguous United States. Water Resour. Res. https://doi.org/10.1029/2019WR0267246 (2020).

    Article 

    Google Scholar
     

  • Assegie, T. A. An effective approach for determining sample size that optimizes the performance of the classifier. Int. J. Intell. Syst. Appl. Eng. 10, 222–225 (2022).


    Google Scholar
     

  • Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 56–67 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mekonnen, M. M. & Hoekstra, A. The Green, Blue and Grey Water Footprint of Farm Animals and Animal Products. Volume 1: Main Report (UNESCO, 2010).

  • Bohrer, B. M. Review: nutrient density and nutritional value of meat products and non-meat foods high in protein. Trends Food Sci. Technol. 65, 103–112 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Bordiean, A., Krzyżaniak, M., Stolarski, M. J., Czachorowski, S. & Peni, D. Will yellow mealworm become a source of safe proteins for Europe? Agriculture 10, 1–30 (2020).

    Article 

    Google Scholar
     

  • Sinke, P., Swartz, E., Sanctorum, H., van der Giesen, C. & Odegard, I. Ex-ante life cycle assessment of commercial-scale cultivated meat production in 2030. Int. J. Life Cycle Assess. 28, 234–254 (2023).

    Article 

    Google Scholar
     

  • Ma, Y., Wang, H. H., Hua, Y. & Kuang, S. The rise of meat substitute consumption and its impact on the U.S. soybean industry. Purdue Univ. https://ag.purdue.edu/commercialag/home/paer-article/the-rise-of-meat-substitute-consumption-and-its-impact-on-the-u-s-soybean-industry/ (2023).

  • Dalgaard, R. et al. LCA of soybean meal. Int. J. Life Cycle Assess. 13, 240–254 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Tuomisto, H. L., Ellis, M. J. & Haastrup, P. Environmental Impacts of Cultured Meat: Alternative Production Scenarios. In Proc. 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (ACLCA, 2014).

  • Tuomisto, H. L., Allan, S. J. & Ellis, M. J. Prospective life cycle assessment of a bioprocess design for cultured meat production in hollow fiber bioreactors. Sci. Total Environ. 851, 158051 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R. & Wichelns, D. Managing Water and Fertilizer for Sustainable Agricultural Intensification (International Fertilizer Industry Association, 2015).

  • Salvagiotti, F. et al. Nitrogen uptake, fixation and response to fertilizer N in soybeans: a review. Field Crop. Res. 108, 1–13 (2008).

    Article 

    Google Scholar
     

  • Bierman, P. M., Rosen, C. J., Venterea, R. T. & Lamb, J. A. Survey of nitrogen fertilizer use on corn in Minnesota. Agric. Syst. 109, 43–52 (2012).

    Article 

    Google Scholar
     

  • Ruddy, B. C., Lorenz, D. L. & Mueller, D. K. County-Level Estimates of Nutrient Inputs to the Land Surface of the Conterminous United States, 1982–2001 (US Geological Survey, 2006).

  • Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Falcone, J. A. Tabular data for selected items from the Census of Agriculture for the period 1950–2017 for counties in the conterminous United States. US Geological Survey https://doi.org/10.5066/P9S4WQHU (2020).

  • Kozicka, M. et al. Feeding climate and biodiversity goals with novel plant-based meat and milk alternatives. Nat. Commun. 14, 5316 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • U.S. Meat Market Size, Share & COVID-19 Impact Analysis (Fortune Business Insights, 2021); https://www.fortunebusinessinsights.com/u-s-meat-market-105342

  • Ahuja, K. & Bayas, S. U.S. Plant-Based Meat Market Size (Global Market Insights, 2020); https://www.gminsights.com/industry-analysis/us-plant-based-meat-market

  • United States Lab Grown Meat Market (BWC, 2023); https://www.blueweaveconsulting.com/report/united-states-lab-grown-meat-market

  • Insects as Food and Feed in Europe: The Future of Protein? (EIT FOOD, 2022); https://www.eitfood.eu/blog/insects-as-food-and-feed-in-europe-the-future-of-protein

  • Edible Insects Market Forecast (2020–2025) (Industry ARC, 2023); https://www.industryarc.com/Report/16638/edible-insects-market.html

  • Miglietta, P. P., De Leo, F., Ruberti, M. & Massari, S. Mealworms for food: a water footprint perspective. Water 7, 6190–6203 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Rotz, C. A., Asem-Hiablie, S., Place, S. & Thoma, G. Environmental footprints of beef cattle production in the United States. Agric. Syst. 169, 1–13 (2019).

    Article 

    Google Scholar
     

  • Xia, Y., Kwon, H. & Wander, M. Developing county-level data of nitrogen fertilizer and manure inputs for corn production in the United States. J. Clean. Prod. 309, 126957 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lin, X., Ruess, P. J., Marston, L. & Konar, M. Food flows between counties in the United States. Environ. Res. Lett. 14, 084011 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Clark, M. et al. Estimating the environmental impacts of 57,000 food products. Proc. Natl Acad. Sci. USA 119, e2120584119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Falcone, J. A. Estimates of County-Level Nitrogen and Phosphorus from Fertilizer and Manure from 1950 through 2017 in the Conterminous United States (USGS, 2021); https://doi.org/10.3133/ofr20201153

  • Singh, P., Kumar, R., Sabapathy, S. N. & Bawa, A. S. Functional and edible uses of soy protein products. Compr. Rev. Food Sci. Food Saf. 7, 14–28 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Omara, P., Aula, L., Oyebiyi, F. & Raun, W. R. World cereal nitrogen use efficiency trends: review and current knowledge. Agrosyst. Geosci. Environ. 2, 1–8 (2019).

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *